
vernetziko: A Cross-Reference Management Tool for the Lexicographer’s
Workbench
Peter Meyer

Institut für Deutsche Sprache
Mannheim

E-mail: meyer@ids-mannheim.de

Abstract
vernetziko is an assistive software tool primarily designed for managing cross-references in XML-based electronic dictionaries. In its
current form it has been developed as an integral part of the lexicographic editing environment for the German monolingual
dictionary elexiko developed and compiled at the Institut für Deutsche Sprache, Mannheim. This paper first briefly outlines how
vernetziko fits into the XML-based dictionary editing technology of elexiko. Then vernetziko’s core functionality and some of the
auxiliary tools integrated into the program are presented from both a practical and a technological point of view. The concluding
sections discuss some software engineering aspects of extending the tool to handle cross-references between multiple resources and
point out some of the advantages of vernetziko vis-à-vis corresponding features of proprietary dictionary writing systems. The
software can be adapted to interconnect off-the-shelf components (database management systems and editors), thus providing a
tailor-made lexicographical workbench for a wide range of XML-based dictionaries without vendor lock-in.

Keywords: electronic dictionaries; dictionary editing software; cross-references; XML; Java

1. Introduction
The proper technical handling of cross-references within
and between articles in electronic dictionaries poses
several well-known problems, cf. (Joffe et al., 2003);
amongst other things, the editing process must enforce
and preserve the validity and consistency of
cross-references as well as any required bidirectionality
(symmetry) of relations such as synonymy. Many
contemporary electronic dictionary systems use a
semistructured markup data representation, usually based
on XML (Lemnitzer et al., [to appear]), which requires
specific solutions for cross-reference modeling
(Müller-Spitzer, 2007; 2010a).

This paper presents and discusses the conceptual
underpinnings of a modular approach to handling
cross-reference structures in XML-based dictionaries. In
its current form, this approach has been implemented for
the German monolingual online dictionary elexiko which
forms part of an ongoing research project of the Institut
für Deutsche Sprache (Institute for the German
Language) (Haß, 2005; Klosa, 2011). elexiko is
accessible free of charge under www.elexiko.de. For
expositional purposes, we will focus on the specific
implementation chosen for elexiko; its overall
architecture as outlined in this paper is, however, easily
adaptable to other dictionary writing systems.

Section 2 is a brief survey of the overall structure of
elexiko XML entries and the technical interplay of
various components of the dictionary writing technology
in elexiko. Section 3 focuses on the core functionality
and some implementational aspects of vernetziko, an
assistive software tool primarily designed for managing
cross-references in electronic dictionaries. Section 4
presents an overview of further assistive management
tools built into the program and gives some background

on the database design chosen for elexiko. Section 5
discusses several software engineering issues that arise
when extending the tool to handle cross-references
between multiple heterogeneous lexicographic resources
in a dictionary portal. The concluding section 6 briefly
summarizes the specific advantages of the approach
presented in this paper vis-à-vis monolithic dictionary
writing systems with built-in reference management.

2. Background: vernetziko as a part of the
lexicographer’s software environment in

elexiko
The lexicographic information contained in each elexiko
entry is encoded in a single standalone XML document.
A cross-reference element inside a ‘source’ element of
one article relates to a ‘target’ element in the same or
another elexiko article, usually by specifying special ID
attributes of the target article and target element. In this
way, cross-references are stored in a strictly local and
non-redundant fashion. An important implication of this
design is that cross-references assumed to be
bidirectional (e.g., links between synonymous senses of
two lexemes) are simply represented as two references in
two separate XML articles.

Every XML document – i.e. dictionary entry – is stored
in an XML-enabled Large Object (LOB) together with
some metadata as a separate record (row) in an Oracle
database table (Müller-Spitzer & Schneider, 2009). In
order to edit an article, authors use a Content
Management System (CMS) that retrieves the
corresponding XML file from the database and writes the
altered version back later. XML files are edited locally
by lexicographers using an off-the-shelf XML editor.
vernetziko is a Java 6 SE application that interacts with
all three of the aforementioned components:

Proceedings of eLex 2011, pp. 191-198

191

• It ‘remotely controls’ the XML editor via the
editor’s API or plugin architecture; specifically, it
can parse, analyze and modify the current document
content.

• It has read-only access to the dictionary database via
a standard JDBC interface.

• It interacts via HTTP with the CMS in order to
check articles out and in. Strictly speaking, this third
interdependency is not necessary; one could easily
eliminate it by allowing vernetziko to update the
database directly. This route has not been taken for
the specific technical setup of elexiko in order to
avoid duplicating code used in the CMS for
authentication and data integrity verification,
amongst other things.

Overall, a highly modular approach has been chosen for
vernetziko, such that any of the three components
enumerated above may easily be replaced by a different
software component. On the implementation side this
modularity is enforced by programming against Java
interfaces that represent the functionality of the different
components and abstract away from implementational
details of database queries and calls to the XML editor’s
API.

3. Core Functionality

3.1 Cross-reference handling in vernetziko
vernetziko has primarily been developed as a software
tool for the automated insertion, correction and checking
of cross-references in an extensible set of XML-based
electronic dictionaries. Cross-references in an elexiko
‘source’ article document – typically more than 20 –
relate an ‘address’, i.e. a specific XML element of this
document, to another address that usually belongs to
another entry, possibly in a different dictionary. In this
manner, cross-references are stored in a strictly ‘local’
and non-redundant way.

Most of the functionality of vernetziko is designed to
overcome practical issues with this pragmatic approach,
particularly with regard to referential integrity:

• Manually checking the consistency and validity of

all outgoing cross-references encoded in an elexiko
article would require far too much effort. vernetziko
cross-checks all references in the presently edited
document with the database and computes
appropriate status information, automatically
updating its displays when the document is modified
in the XML editor.

• As said above, the target of a cross-reference is
specified using ID strings, viz. the values of id
attributes of the targeted article and XML element.
In some cases, two nested elements – for a sense and
its targeted subsense – must be specified in this way.
When a new cross-reference is created, manually

inserting such ID values is clumsy and error-prone.
With vernetziko, lexicographers only have to specify
a lemma and then select one of its (sub-)senses from
a list to let the program fill in or correct all missing
details of the desired reference, cf. Fig. 1.

• Incoming cross-references for a given dictionary
article can only be found through complex database
queries. vernetziko automatically performs all
necessary queries and then enumerates and checks
the status of all existing incoming references for the
presently edited document.

• Bidirectional cross-references (e.g., links between
synonymous senses of two lexemes that are required
to be symmetrical in elexiko) are represented as two
independent references in two separate XML articles.
vernetziko matches the lists of outgoing and
incoming references for the presently edited article
in order to determine whether obligatory
bidirectionality is already accounted for.

• Where an incoming cross-reference to the presently
edited article is not yet complete or invalid,
vernetziko can help to update the source document
of the cross-reference in a few simple steps.

Figure 1: Selecting a word sense

Incoming and outgoing cross-references are listed in
tabular form, cf. Fig. 2. References concerning
sense-relations (synonymy, hyponymy etc.) are listed
separately from all other kinds of references. The tables
provide standard sorting and filtering functionality.
vernetziko also offers a tree view of outgoing word sense
references that displays the relevant parts of the XML
structure (Fig. 3). Both these tables and the tree view can
be used interactively for fast navigation, sorting and
reference insertion.

Proceedings of eLex 2011, pp. 191-198

192

Figure 2: Tabular view of incoming (upper table) and outgoing (lower table) sense relations of Wasser (‘water’)

Figure 3: Using the tree view for sense relations

3.2 Cross-reference status
For the working lexicographer, the most relevant
information in the tabular presentation is the status of the
individual cross-references. The status is symbolized by
various arrow icons that inform the user on the extent to
which different requirements are met. In particular,
cross-references should be complete and well-formed;
more important, they must be valid, pointing to a target
address that really exists in the lexicographic database,
even if this address happens to be a preliminary
reference to a still unedited article. Compulsory
symmetry and transitivity in certain reference types such
as synonymy can be an additional consistency
requirement.

A cross-reference may fail to be valid or consistent in
many different ways. The status icons are based on a
systematic typology of possible cross-reference statuses
that is exhaustive but still perspicuous and practical from
the lexicographer’s point of view.

In order to simplify the exposition of this typology, some
terminology will be introduced first. A unidirectional
cross-reference, or reference for short, is a labeled
ordered pair consisting of a source and a target address.
The label is the relation type encoded by the
cross-reference, e.g. ‘is a synonym of’, ‘is
morphologically derived from’. An address is an
identifiable subpart of a resource. Besides dictionary
entries, examples for possible resources include files,
Internet URLs and other digitally represented structured
text documents. In a dictionary entry, sections pertaining
to specific word senses are examples of addresses. If a
dictionary entry is encoded as an XML document, any
XML element within that document is a potential address,
as long as it is systematically identifiable by an XPath
expression. In many resources, different address types
must be distinguished, such as word senses vs. sections
on grammar in a dictionary. When no reference to a
subpart of a resource is possible or necessary, this will be
modeled as an address type with only one trivial address
per resource. – Note that source and target address may
belong to the same resource.

Proceedings of eLex 2011, pp. 191-198

193

Simplifying somewhat, vernetziko distinguishes between
the following statuses of unidirectional references:

a. The target resource does not exist or its specification

is either formally inadmissible or factually
inconsistent.

b. The specification of the target resource is
incomplete.

c. The target resource is correctly specified, but the
target address within that resource does not exist or
its specification is either formally inadmissible or
factually inconsistent.

d. The target resource is correctly specified, but the
target address within that resource is not fully
specified, possibly because the target resource is an
as yet unedited entry.

e. The target address is correctly and fully specified.

If at least the target resource has been specified correctly
in two different cross-references and there are no
inconsistencies or other errors in both references (i.e.,
only cases d. and e. apply), these two references form a
possible bidirectional cross-reference and are thus
possible reverse cross-references to each other if and
only if their relation types match (e.g. hyponymy vs.
hyperonymy) and the target address of each reference is
either equal to the source address of the other reference
or contains this source address as a subpart.

For a given reference R this leads to the following
panoply of possibilities regarding reverse references:

f. There is no possible reverse cross-reference for R,

although the relation type of R admits of such
references.

g. There is no possible reverse cross-reference for R,
although this is considered compulsory (e.g. in case
of synonymy, at least for elexiko).

h. R and exactly one of the potential reverse
cross-references both have status e. above (target
address correctly and fully specified). This is the
case of a ‘perfect’ bidirectional reference.

i. There is more than one possible reverse reference
for R, but none of these cases meets the
requirements of h. above.

j. There is exactly one potential reverse reference, but
at least one of the two references is not fully
specified (in the sense of d. above).

In order to establish the status of cross-references,
vernetziko uses Oracle’s XML-enabled full text search
capabilities to obtain all incoming cross-references, then
reads in the XML data of all entries referencing and
referenced by the presently edited one, parses all XML
documents using a StAX parser and finally tries to match
all cross-references with addresses in the respective
entries and with possible reverse references. The user
can start this process manually; a background task
checking periodically for relevant changes in the

currently edited XML document updates status
information every five seconds.

3.3 Implementational aspects: Handling the
interplay with the XML Editor
A fair amount of typical editing functions must be
present in the XML editor’s API, such as navigating the
caret to arbitrary XML elements, inserting, deleting and
modifying XML elements, opening and closing XML
documents etc. As stated above, a Java interface
represents all methods used to call editor functionality
from within vernetziko. The editor-specific API calls
themselves are encapsulated in a single class that
comforms to this interface. For the elexiko project, two
implementations of the interface have been developed so
far, viz. for Corel XMetaL 3.1 and for the <oXygen/>
XML editor (version 13). Any editor suitable for this
kind of modular setup must either be usable as an
application server to other standalone programs (for
instance, through a COM mechanism in MS Windows
operating systems; this is the case with XMetaL) or
expose its API via some sort of plugin architecture (this
is the technique chosen for <oXygen/>). These two
scenarios have rather different technical implications,
however; changing from one of them to the other is not a
trivial task. In the first case, vernetziko is a standalone
desktop application, in the second, it is provided as a
bunch of plugin classes.

The most difficult aspect of a modular approach to
remote-controlling the XML editor is that different
editors use different, mostly proprietary, APIs to
describe the structure of XML documents. Naturally, all
of these APIs bear a certain similarity to, e.g., the Java
DOM API. Since the editor-specific API classes
representing XML nodes, elements, documents and
attributes must be processed in many ways by vernetziko,
it is necessary to devise editor-independent interfaces
that represent the needed functionality of
node/element/attribute/document classes. The
editor-specific XML objects are then referenced in
wrapper classes implementing these interfaces. This way,
we obtain an editor-independent DOM-like
representation of the editor’s XML nodes; throughout
vernetziko’s code, only the wrapper classes are used.

4. Further assistive management tools

4.1 Features of the user interface
vernetziko features a number of additional tools that help
to speed up and simplify the editing process:

• Article-specific notes and XML snippets can easily

be stored, retrieved and inserted into the edited
document.

• An advanced database search tool allows complex
Boolean combinations of search criteria including
metadata and XPath expressions, cf. Fig. 4.

• Administrators may perform operations on large sets

Proceedings of eLex 2011, pp. 191-198

194

of entries (alter user access rights, check in or out)
that can be defined by search criteria or specified
manually or from lemma list text files.

• Cross-references concerning sense relations such as
synonymy and hyponymy can be visualized
graphically. The visualization program traverses
arbitrarily long chains of incoming or outgoing
cross-references and can recursively construct
graphs with very large numbers of nodes (word
senses).

vernetziko not only helps to secure consistency of
cross-references in individual dictionary entries, but also
provides tools for scanning the entire lexicographic
database of elexiko for problematic cross-references, viz.

• inconsistent references, in particular ‘dead’

references pointing to inexistent entries or word
senses;

• unidirectional references for which a required
reverse reference does not exist yet.

The results of these scans are output as UTF-8 text files.

4.2 General considerations on database design
There are several reasons why the seemingly obvious
strategy of storing the cross-reference structure of a
dictionary in a separate relational data structure in the
database is not always feasible. For instance, the exact
position of cross-references within the source element in

an article’s XML representation might vary depending
on lexicographical considerations, which would
necessitate the use of ‘pointers’ from within the XML
document to the external link table. In such cases, a
separate cross-reference table introduces new sources of
possible inconsistencies and considerably complicates
the editing process for dictionary entries since two
database tables must be modified concurrently and kept
in synch. It can be argued that an automatically updated
relational ‘cache’ table that simply duplicates basic
cross-reference data (addresses and reference type) is the
right solution to meet performance requirements in these
cases (cf. Joffe et al., 2003; Meyer & Müller-Spitzer,
2010). For the time being, even this solution is not used
in the elexiko project since the database XML query
technology is still fast enough to cope with real-time
requirements.

The approach taken for elexiko therefore employs a
maximally lean and redundancy-free database design and
shifts the administrative burden to the external software
tool vernetziko.

5. Managing Cross-References in a
Dictionary Portal: Software Engineering

Considerations
elexiko forms part of OWID, a web portal of German
electronic dictionaries (Müller-Spitzer, 2010b). A tool
such as vernetziko should be easily adaptable to the
integration of new lexicographic resources into the portal,

Figure 4: Extended database search and scanning options

Proceedings of eLex 2011, pp. 191-198

195

in particular with respect to managing cross-references
between different dictionaries of potentially
heterogeneous structure, i.e. with widely differing
DTDs/schemas.

The design of such management software has to address
many challenges, if maximum generality, extensibility
and reusability of software components are to be
combined with a maximally perspicuous and
parsimonious approach. These challenges include the
following points:

• In an Internet portal, new online dictionaries may be

added at any time. Entries in different dictionaries
may be structured in various ways – conforming to
widely differing DTDs/XML schemas – and contain
disparate types of addresses.

• A specific type of address (e.g., word senses in a
dictionary) may be encoded differently in different
dictionaries. For example, the structure of the XPath
associated with a word sense in an XML-based entry
might vary according to the dictionary.

• The very same address type might be referred to in
different ways depending on the referring resource,
using, e.g., different XML attribute names.

• Sometimes the position where a reference is
encoded in a document is relevant to the
identification of the reference, sometimes not.

• Address types may differ to a great extent in the
kind of informational structure associated with them;
compare references to word senses with references
to web URLs or citations.

• The programmer should be able to add new types of
addresses or references in a modular way, if possible
without touching existing classes.

• Different resources, address types, and reference
types require different operations in a management
tool. There is no set of common methods for all
address or reference types pertaining to a certain
resource. One and the same address type might even
have to be treated differently, depending on the
resource it occurs in. The implementation of
methods that take references as input can depend on
the resource and address type of both source and
target entry.

Thus, from a software engineering perspective,
vernetziko has to cope with a variant of what is often
called the expression problem: New dictionaries and
cross-reference types may require the addition of both
new classes representing types of
resources/addresses/references and new operations on
objects of such classes. For vernetziko, a very simple
solution based on parameterized types will be presented
here. The solution is not strictly type-safe in that it uses
type checks and subsequent casts, but given the lack of
self types, multimethods, mixins etc. in Java, any
completely type-safe solution produces an enormous
overhead in static languages, cf. (Torgersen, 2004). In

the pragmatic approach taken for vernetziko, there is one
and only one class that is responsible for dispatching all
method calls concerning resources, addresses and
references. After adding new classes of any of these
entity types, only the dispatcher class needs to be
modified accordingly; type checks and casts are
performed only in this class.

5.1 Domain entity classes
Entries. Since the different portal dictionaries are no
suitable candidates for domain entities – no elementary
operations are performed on dictionaries as a whole –,
the notion of an entry belonging to a specific dictionary
(or, more generally, that of a resource) is taken as the
point of departure for the domain class model. All entry
classes such as Dictionary1Entry, Dictionary2Entry, …
derive from an abstract class Entry and store information
that identifies the particular individual resource.

Addresses. Different address types are represented by
subclasses (WordSenseAddress, GrammarAddress, …)
of an abstract Address class that contain a reference to
the Entry object the address object ‘belongs’ to. Different
address types will require widely differing sets of fields
for the information associated with them. One and the
same address type may appear in entries of different
resources; for instance, two dictionaries may each have
dedicated sections for different word senses within every
entry. On the other hand, a distinction between word
senses in Dictionary1 and Dictionary2 is still needed,
since they might have slightly differing formal
representations, such as differing names of the relevant
XML elements or attributes. Therefore, we parameterize
the static address types on the type of the Entry field. In
Java notation, the same sort of address, e.g., word senses,
is reflected by different static types, e.g. SenseAddress
<Dict1Entry> and SenseAddress <Dict2Entry>,
according to the resource its entry belongs to.

References can be dealt with accordingly. In many
scenarios, a single Reference class will suffice whose
fields are references to the source and the target Address
objects. Depending on the context, further fields will be
used to represent classificatory or status-related
information about a reference. Here, we parameterize on
the types of both the source and the target address. The
static type of a specific reference from a word sense in a
dictionary entry to a paper in a specific volume of a
linguistic journal may then look as follows in Java:
Reference <SenseAddress <DictionaryEntry>,
PaperAddress <JournalEntry>> (where JournalEntry
objects model journal volumes).

5.2 Dispatcher class
Although objects of classes AddressX <Dict1Entry> and
AddressX <Dict2Entry> share the same internal class
makeup – representing the same sort of address in two
different resources and therefore both being of type
AddressX<? extends Entry> –, they must possibly be

Proceedings of eLex 2011, pp. 191-198

196

handled differently, requiring, e.g. different code for
navigating in the editor to the corresponding element. On
the other hand, code duplication has to be avoided in the
case where certain (but possibly not all!) methods
pertaining to these both types can in fact be implemented
identically.

In addition, not every address type is ‘compatible’ with a
given resource (images don’t have word senses);
additionally, most combinations of a source and a target
address type do not amount to a valid reference type.
Many operations may only be relevant for a small subset
of, say, address types (consider the task of printing
information about an address). These many ‘holes’ in the
matrices of actually existing type combinations and
actually permitted parameterized types per operation
cannot be accounted for in advance by the type system or
some sort of inheritance hierarchy.

In typical scenarios, most methods don’t change the state
of entry, address and reference objects, the latter rather
being used like ‘passive’ information containers. In
addition, new functionality operating on addresses or
references might be added at any time to the
management application, which increases the danger of
bloated and ever growing interfaces with empty
implementations for many subclasses.

All considerations mentioned above point to a solution
where domain entity objects are treated as mere data
containers with minimal public interfaces. All public
methods of the domain entity classes relay to the special
dispatcher class mentioned above. As an example, a
method call like myAddress.moveXMLEditorCaretHere()
would be relayed by calling a static method, Dispatcher.
moveXMLEditorCaretHere(myAddress). The static
method moveXMLEditorCaretHere(Address<?>
anAddress) of the dispatcher class then type-checks the
input parameter anAddress and, after a corresponding
cast, calls the appropriate method of some service class
in a type-safe manner. Note that though the Java
compiler erases type information in generics, the
parameter type can be obtained at runtime by getter
methods: In our example, myAddress holds a reference to
the resource (i.e. dictionary entry) it belongs to; the
runtime type of this resource object is identical to the
parameter type of myAddress.

6. Concluding Remarks
The software tool vernetziko adds advanced
cross-reference management facilities and various helper
tools to an already existing dictionary database system
and editing environment. This is possible due to a
modular software design that encapsulates the access to
both other components of the IT environment, such as
the XML editor, and the internal structural makeup of the
lexicographic data involved. Support for new dictionary
resources and new types of cross-references within and
between dictionaries can easily be added in a plugin-like

fashion. While most of the functionality provided by
vernetziko is part and parcel of many commercial
dictionary writing systems, the main advantage of the
approach taken with vernetziko is that the software can
be adapted to interconnect a wide variety of off-the-shelf
components (database management systems and editors)
and allows tailor-made access to and administration of
almost arbitrary XML resources and legacy dictionary
data, thus providing the ‘glue’ for a tailor-made
lexicographical workbench without vendor lock-in –
ideally suited to large-scale projects and to the
management of cross-references between multiple
dictionaries.

7. References
Gamma, E., Helm, R., Johnson, R.E., & Vlissides, J.

(1995). Design Patterns. Elements of Reusable
Object-Oriented Software. Amsterdam:
Addison-Wesley Longman.

Haß, U. (ed.) (2005). Grundfragen der
Elektronischen Lexikographie: Elexiko - Das
Online-informationssystem zum deutschen Wortschatz.
Berlin, New York: de Gruyter.

Joffe, D., de Schryver, G.-M. & Prinsloo, D.S. (2003).
Computational features of the dictionary application
“TshwaneLex”. Southern African Linguistics and
Applied Language Studies 21(4), pp. 239-250.

Klosa, A. (ed.) (2011). elexiko - Erfahrungsberichte aus
der lexikografischen Praxis eines Internetwörterbuchs.
Tübingen: Gunter Narr.

Lemnitzer, L., Romary, L. & Witt, A. (to appear).
Representing Human and Machine Dictionaries in
Markup Languages. In R.H. Gouws, U. Heid, W.
Schweickhard & H.E. Wiegand (eds.) Dictionaries. An
International Encyclopedia of Lexicography.
Supplementary Volume: Recent Developments with
Special Focus on Computational Lexicography.
Berlin/New York: de Gruyter.

Martin, R.C. (1997). Acyclic Visitor. In R.C. Martin, D.
Riehle & F. Buschmann (eds.) Pattern languages of
program design 3. Boston, MA: Addison-Wesley
Longman, pp. 93-103.

Meyer, P., Müller-Spitzer, C. (2010). Consistency of
Sense Relations in a Lexicographic Context.
Workshop on Semantic Relations, International
Conference on Language Resources and Evaluation
(LREC) 2010, May 18, Malta.

Müller-Spitzer, C. (2007). Vernetzungsstrukturen
lexikografischer Daten und ihre XML-basierte
Modellierung. Hermes 38, pp. 137-171.

Müller-Spitzer, C. (2010a). The Consistency of
Sense-Related Items in Dictionaries. Current Status,
Proposals for Modelling and Potential Applications in
Lexicographic Practice. In P. Storjohann (ed.)
Lexical-Semantic Relations. Theoretical and Practical
Perspectives. Lingvisticæ Investigationes
Supplementa. Amsterdam/New York: Benjamins, pp.
145-162.

Müller-Spitzer, C. (2010b). OWID – A dictionary net for

Proceedings of eLex 2011, pp. 191-198

197

corpus-based lexicography of contemporary German.
In A. Dykstra, T. Schoonheim (eds.) Proceedings of
the XIV Euralex International Congress. Leeuwarden,
6-10 July 2010. Fryske Akademy: Leeuwarden, pp.
445-452.

Müller-Spitzer, C., Schneider, R. (2009). Ein
XML-basiertes Datenbanksystem für digitale
Wörterbücher – Ein Werkstattbericht aus dem Institut
für Deutsche Sprache. it – Information Technology
51(4), pp. 197-206.

Torgersen, M. (2004). The Expression Problem
Revisited. Four New Solutions Using Generics. In M.
Odersky (ed.) ECOOP 2004 - Object-Oriented
Programming: 18th European Conference, Oslo,
Norway, June 14-18, 2004. Proceedings (Lecture
Notes in Computer Science 3086). Berlin: Springer,
pp. 123-146.

Proceedings of eLex 2011, pp. 191-198

198

