
Detecting Structural Irregularity in Electronic Dictionaries
Using Language Modeling

Paul Rodrigues, David Zajic, David Doermann, Michael Bloodgood, Peng Ye
University of Maryland

College Park, MD
E-mail: {prr, dmzajic, doermann, meb, pengyu}@umd.edu

Abstract
Dictionaries are often developed using tools that save to Extensible Markup Language (XML)-based standards. These standards
often allow high-level repeating elements to represent lexical entries, and utilize descendants of these repeating elements to represent
the structure within each lexical entry, in the form of an XML tree. In many cases, dictionaries are published that have errors and
inconsistencies that are expensive to find manually. This paper discusses a method for dictionary writers to quickly audit structural
regularity across entries in a dictionary by using statistical language modeling. The approach learns the patterns of XML nodes that
could occur within an XML tree, and then calculates the probability of each XML tree in the dictionary against these patterns to look
for entries that diverge from the norm.

Keywords: anomaly detection; error correction; dictionaries

1. Introduction
Many dictionaries today are developed using tools that
save to Extensible Markup Language (XML)-based
standards, such as the Lexical Markup Framework
(LMF) (Francopoulo et al., 2007), the Lexicon
Interchange FormaT (LIFT) (Hosken, 2009), or the Text
Encoding Initiative (TEI) (Burnard & Bauman, 2007).
Often, these standards allow high-level repeating
elements to represent lexical entries and utilize
descendants of these repeating elements to represent the
structure of each lexical entry, in the form of an XML
tree.

This paper presents a method to audit the structural
regularity across all the entries in a dictionary,
automatically. This approach uses statistical language
modeling (LM), a technique commonly used in natural
language processing, to learn the linear combinations of
XML nodes that could occur within a lexical entry, and
then evaluates each of these lexical entries against the
learned patterns, looking for entries that diverge from
the norm.

Technical users of XML often utilize tools to check the
well-formedness of an XML document, or to determine
the validity of a document as applied to a particular data
schema. These help catch certain types of errors, such as
syntax, or data relationship errors.

With many dictionary schemas, however, the structure
within entries can vary from entry to entry. This
structural permissiveness can allow a dictionary writer
to introduce or underspecify ambiguous relationships, or
to accidently place a node underneath an incorrect
parent node in the entry’s XML tree. These kinds of
errors may be valid XML and may conform to the data
specification, so they will not be caught by traditional
XML tools, but they are semantically incorrect.

The LM technique described here linearizes the lexicon
structure, ignoring the underlying text, converting the
opening tags in XML into tokens, and then considering
the string of tokens representing a lexical entry to be a
sentence. A probabilistic language model is learned
from these example sentences, and then that model is
evaluated against each lexical entry in the corpus. Nodes
that are in unusual positions produce a high perplexity,
identifying possible anomaly points.

2. XML
Extensible Markup Language (XML), a text format used
to store hierarchical data electronically, is often
described by a data modeling definition such as a
Document Type Definition (DTD), XML Schema (Gao,
2011), or RELAX NG (ISO, 2008). These data modeling
definition documents use a regular language to define
the data permissible in the XML document. Tools are
available to validate, or ensure strict compliance of an
XML document, to the data modeling definition. These
tools result in a Boolean decision as to whether the data
conforms to the specification, and are unable to alert the
user to structurally valid, but illogical or rare structures
that one may wish to investigate.

3. Structural Errors in Dictionaries

3.1 Dictionary Creation
Dictionaries are often the product of long-term research
projects, or large-scale projects created quickly with
multiple collaborators. Without strict conformance to a
recording standard, entries can drift in style across time
or between collaborators. Additionally, dictionaries can
be large and complex, leaving them expensive to edit.
Whether due to cost or deadlines, dictionaries are
published that have errors and inconsistencies.

Proceedings of eLex 2011, pp. 227-232

227

Figure 1: Missing Orthography. Scan from Qureshi

(2003)

3.2 Dictionary Digitization
The process of digitizing dictionaries from a printed
book by optical character recognition (OCR), or
manually keying in content, can cause additional

structural errors to be introduced. Typically in print
dictionaries, typefaces, text size, text position, and
unreserved symbols are used in combination to indicate
the structure of a lexical entry and the scope of linguistic
operators (such as English words and or or).
Typographical errors that occur in the original print
dictionary, misinterpretation by the OCR system,
operator ambiguity, or typist error during the digitization
stage can alter the intended structure of the dictionary.
These errors can result in incorrect marking of
subcomponents within a lexical entry or incorrectly
understanding scope within the language examples. In
bilingual dictionaries, translations may be forgotten
(Figure 1), and languages may be mixed with no
delineation (Figure 2).

Figure 2: No signal between Dhivehi pronunciation and English meanings. Scan from Reynolds (2003)

4. Anomaly Detection Using Language
Modeling

While language modeling is not a common approach for
structural anomaly detection, it has been employed to
detect anomalies in language use. Language models in
natural language processing are commonly used to
model linear combinations of word tokens or
part-of-speech types. Lexicon XML structure is similar
to the latter, in that the node names and attributes within
the XML are chosen from a small closed class.

Xia & Wong (2006) used language modeling to tag
lexemes in Chinese-language Internet chat transcripts as
either standard Chinese, or anomalous. The authors
noted that chat speak has a dynamic lexicon, and
training corpora for supervised systems in this domain
can obsolesce.

The authors trained trigram language models on
standard Chinese newspaper corpora in order to induce
typical values for trigram entropy on words and parts of
speech in the standard language. They then learned a
language model on a hybrid corpus consisting of
newspaper corpora, and a chat transcript corpus. With
the typical entropy values known from the newspaper
corpus, they evaluated a language sample with the
hybrid model. When a trigram had higher entropy than
the standard average, they marked that trigram as an
anomaly. The authors found words to be a better

indicator of anomaly than POS tags, reaching an F-score
of 0.85 for words and 0.70 for POS tags in their best
conditions.

The authors do not qualify the data that is flagged
anomalous. It would be interesting to know if this data is
dialectal Chinese, misspelled words, bad grammar,
emoticons, or lexemes unique to Chinese Internet chat.
The POS tag condition is more comparable to our
scenario, as both their POS categories and our structure
description language have a small vocabulary.

Jabbari (2010) was interested in detection of anomalous
words in the context of the words around them, which
has practical applications including real-word spelling
error detection and word sense disambiguation. The
author examined an approach using bags of words, one
using language models, and then a combination of the
two. The language modeling approach marked a word as
an anomaly if the probability of the word in that context
was less than the expected probability of not having that
word in the context. The language modeling system
received an overall F-score of 0.71. It performed less
well than the author's bag of words model, and the
combined model. The author did not look at parts of
speech, which is more relevant to our task.

5. LM Anomaly Detection for Flattened
Structures

In the previous section, we showed how language

Proceedings of eLex 2011, pp. 227-232

228

modeling has been used to detect anomalies in a linear
string of tokens. This section explains how to convert
the XML tree into a linear string of tokens, and how this
is used to build a language model.

The input to the language model is determined by
specifying a repeating node in the XML file that
contains child trees to be examined. Each of these
repeating tree structures is traversed depth-first, and the
element names and attributes of children are recorded to
a buffer as a tag that identifies that element. In XML, a
depth-first search is a linear scan of each node within a
tree. At the end of each repeating node the buffer
contains a single layer of whitespace-separated tags
corresponding to a flattened representation of the tree.
We call this a tag sentence. The tag sentences for all the
repeating nodes form a corpus of tag sentences.

This corpus can then be used to train a statistical
language model. For our experiments, we used the SRI
Language Modeling Toolkit (SRILM) (Stolcke, 2002).
SRILM includes command line programs and C++
libraries to calculate n-gram statistics for a language,
and to measure the perplexity of a text sample to those
statistics. SRILM reads and writes to a standard ARPA
(Advanced Research Projects Agency) file format for
n-gram models. There are other language modeling
toolkits available. Typically, the differences between
applications are in the speed of the evaluation, the size
of the model created, or the statistical smoothing
algorithms included for estimating low-occurrence
combinations. In our case, speed and model size is not
much of an issue, but estimating combinations of low
token occurrence is. Since we are training and testing on
the same dataset, advanced smoothing algorithms would
not add any benefit. SRILM runs with Good-Turing and
Katz back-off by default.

6. Evaluation

6.1 Dictionary and Evaluation Data
We perform our evaluations on a bilingual Urdu-English
dictionary of 44,237 lexical entries (Qureshi, 2003).
This dictionary has been edited by a team of linguists
and computer scientists to remove errors using a
change-tracking system we refer to as Dictionary
Manipulation Language (DML) (Zajic et al., 2011).
DML provides a number of benefits for dictionary
editing, but the core advantage for this application is that
DML can be used to mark every error discovered in the
original source dictionary. From the change log, we can
create a list of trees we know to be errorful that can be
used for evaluating our automatic systems.

6.2 Tree Tiers
The entries in Qureshi (2003) can contain multiple
senses, each of which can contain multiple word forms.
An entry can also contain word forms directly. These are
high-level structures within each entry that can vary

significantly. In order to isolate where the errors occur
within the entry, we partition some of the structure,
performing evaluations on ENTRY, SENSE, and FORM
nodes separately. For the ENTRY evaluation, the
highest-level SENSE and FORM branches were
collapsed into single nodes, with their descendants
pruned. For the SENSE trees, descendent SENSE and
FORM branches were collapsed. No branches were
collapsed in the trees for FORM evaluation. We call the
ENTRY, FORM, and SENSE trees tiers.

Our three tiers are listed in Table 1, showing the number
of occurrences in the dictionary, as well as the number
of nodes of that tree tier that had a hand-made correction
within the tree.

Tier Count in Dictionary Hand-corrected
ENTRY 15,808 7,511
FORM 51,105 9,845
SENSE 88,465 20,037

Table 1: Tree counts and manual correction counts

6.3 n-gram Models
For each of these tiers, content and closing tags were
removed, and the trees flattened to form a tag sentence.
These three corpora were used to train 2-, 3- and 4-gram
language models, without smoothing.

Tree Unique
Tokens

2-gram 3-gram 4-gram

ENTRY 21 178 395 667
FORM 7 25 44 51
SENSE 22 183 384 628

Table 2: Unique Token and n-gram grammar counts at

each tree level.

This language model serves to provide prototype trees
for comparison, storing which tags can co-occur with
which others, and what the likelihood of that
co-occurrence will be. Table 2 lists the three tiers, the
count of unique tokens (XML descendants) under that
tier, and the number of unique n-grams created by the
linear combination of those tokens.

6.4 Applying the models
Each tag sentence from the dictionary is then evaluated
with this language model, producing statistical
measurements for each flattened tree structure: log
probability of the sentence (LOGPROB), average
perplexity per word (PPW), and average perplexity per
word with end tags (PPWET). LOGPROB and PPWET
both evaluate trees against n-grams that contain START
OF SENTENCE and END OF SENTENCE tags. This
helps model differences between tokens that appear
initial or final in the tag sentence.

Proceedings of eLex 2011, pp. 227-232

229

We rank these measurements to force the trees into a
decreasing order of anomalousness. For LOGPROB, the
trees are sorted in ascending order, and for both PPW
and PPWET, the trees are sorted in descending order.

For evaluation, we provide precision at the top R
anomalies, where R can be {15, 30, 50, 100, 500, or
1000}. A hit occurs where a tree in the top R of our list
has shown up in our errorful tree list. Precision at Rank
is defined as the number of hits divided by R.

6.5 4-gram Results
Out of the three n-gram lengths evaluated, 4-grams
performed the worst overall. The average of the six
precisions at rank scores for each tree tier and each
language model measurement were lower than those for
both 3- and 2-grams. Several trials in the group did
reach the best scores for their Tier-R combination, but
these are matched in the 2- and 3-gram models. Results
can be seen in Tables 3, 4, and 5.

Tier / R 15 30 50 100 500 1000 AVG
ENTRY .93 .80 .70 .63 .61 .62 .72
FORM .93 .93 .96 .98 .98 .99 .96
SENSE .93 .93 .92 .89 .61 .56 .81

Table 3: Descending PPWET 4-grams

Tier / R 15 30 50 100 500 1000 AVG
ENTRY 1.0 .70 .66 .60 .65 .67 .71
FORM .93 .97 .98 .99 .99 .99 .98
SENSE .93 .93 .92 .90 .56 .54 .80

Table 4: Descending PPW 4-grams

Tier / R 15 30 50 100 500 1000 AVG
ENTRY .87 .93 .94 .90 .80 .76 .87
FORM .80 .90 .92 .95 .98 .78 .89
SENSE .93 .93 .96 .91 .85 .81 .90

Table 5: Ascending LOGPROB 4-grams

6.6 3-gram Results
The 3-gram language model performed well, capturing
the best average Tier / R trials for FORM with the PPW
measurement. The results can be found in Tables 6, 7,
and 8.

Tier / R 15 30 50 100 500 1000 AVG
ENTRY .93 .83 .80 .73 .69 .72 .78
FORM .93 .93 .96 .98 .98 .99 .96
SENSE .93 .90 .92 .91 .68 .69 .84

Table 6: Descending PPWET 3-grams

Tier / R 15 30 50 100 500 1000 AVG
ENTRY .93 .73 .72 .69 .69 .74 .75
FORM .97 .98 .99 .99 .99 .99 .99
SENSE .93 .93 .92 .91 .64 .59 .82

Table 7: Descending PPW 3-grams

Tier / R 15 30 50 100 500 1000 AVG
ENTRY .87 .93 .94 .93 .86 .84 .90
FORM .87 .93 .94 .95 .98 .78 .91
SENSE .93 .97 .98 .94 .91 .87 .93

Table 8: Ascending LOGPROB 3-grams

6.7 2-gram Results
2-gram language models results can be found in Tables
9, 10, and 11. This length n-gram performed the best,
with the best average Tier / R trial for ENTRY and for
SENSE using the LOGPROB measurement. This
measurement, shown in Table 11, has the largest number
of Tier/R trials with the highest precision.

Tier / R 15 30 50 100 500 1000 AVG
ENTRY .73 .73 .74 .73 .79 .76 .75
FORM .93 .97 .98 .98 .98 .99 .97
SENSE .93 .83 .74 .81 .74 .78 .81

Table 9: Descending PPWET 2-grams

Tier / R 15 30 50 100 500 1000 AVG
ENTRY .73 .73 .66 .72 .75 .79 .73
FORM .93 .97 .98 .99 .99 .99 .98
SENSE .93 .93 .92 .83 .71 .76 .85

Table 10: Descending PPW 2-grams

Tier / R 15 30 50 100 500 1000 AVG
ENTRY .87 .93 .96 .93 .91 .90 .92
FORM 1.0 1.0 1.0 .97 .98 .78 .96
SENSE .93 .97 .98 .96 .96 .91 .95

Table 11: Ascending LOGPROB 2-grams

6.8 Other-grams
Unigram, 5-gram, and 6-gram models were also
evaluated according to their LOGPROB. 5- and 6-gram
models performed at a lower accuracy for nearly all R
and tree levels. Unigram evaluations were inconclusive.
Accuracy was slightly higher for some R, but some were
far lower.

7. Conclusions
We presented a statistical error detection technique for
dictionary structure that uses language modeling to rank
anomalous dictionary trees for human review. To create
the language model, we split the dictionary into three

Proceedings of eLex 2011, pp. 227-232

230

tiers-ENTRY, FORM, and SENSE, and flatten each to
form a tag sentence. We create 2-, 3-, and 4-gram
language models based on this flattened structure, and
evaluate against the original dictionary using Perplexity
Per Word (PPW), Perplexity Per Word with End Tags
(PPWET), and log probability (LOGPROB). These
measurements were ranked, and we presented
Precision-at-Rank for all trials.

We found the highest precision Tier/R trials to be spread
across several n-gram length language models, and
several language model measurements. In general, we
find that the best overall configuration is a 2-gram
language model, which ranks the trees by ascending log
probability. Averaging our six precisions for this metric,
the system reached 92% precision on ENTRY error
detection, 95% on SENSE, and 96% on FORM.
Evaluating the top 50 anomalies, we reached 96%
precision on ENTRY, 98% on SENSE, and 100% on
FORM.

8. Comments
Though a large amount of man-hours were dedicated to
the eradication of errors in our copy of the dictionary,
we can make no assumption that we have found all of
the errors present, and some of the trees that have not
been marked bad, may indeed be errorful. Evaluation of
our system, given this scenario, provides some difficulty.
We have a small number of known-bad trees from the
original source dictionary. The large remainder of trees
is of questionable character, but are probably good. We
cannot make large-scale automatic judgments on the
questionable trees, but we can make sure the known-bad
trees are ranked highly in our system. Actual precision
should be considered at least the numbers reported.
Unfortunately, without known-good trees, it is difficult
to provide reliable recall measurements.

9. Future Work

9.1 Iterative language model improvement
As each error in a dictionary is corrected, the language
model created from that dictionary improves. An
iterative approach, having a linguist examine a small R,
correcting the trees, and then rerunning the model, may
be the most efficient use of a linguist’s time.

9.2 Bootstrapping a cleaner model
With DML, we can find a small percentage of trees that
are guaranteed to have had human review at some level.
These trees are more likely to be correct than the
completely untouched trees, and a corpus of the trees
from the final dictionary could be used to create a higher
quality language model to compare against the source
dictionary.

9.3 Node-level anomaly detection
Evaluation of a language model on a tag sentence

outputs a probability at each word. It would be
interesting to show whether the peaks of perplexity
correspond to the precise errors corrected in our
dictionary.

9.4 Related systems
The language modeling approach is the first in a series
of experiments examining anomaly detection on
dictionary structure. We have several other frameworks
currently under development, and expect approaches
that harness structure, instead of flattening structure, will
perform with higher accuracy. Additionally, we are
planning work on a graphical tool to enable dictionary
editors to interact with these anomaly detection systems,
and plan to research how these systems can incorporate
automatic error correction with assistance of an editor.

10. Acknowledgements
We would like to thank Mona Madgavkar for answering
questions about the dictionary we were using for
evaluations, as well as the other linguists that have
contributed to this dictionary’s correction. Additional
thanks to C. Anton Rytting, Mike Maxwell, and two
anonymous reviewers for their comments on this work.

This material is based upon work supported, in whole or
in part, with funding from the United States Government.
Any opinions, findings and conclusions, or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the University of Maryland, College Park and/or any
agency or entity of the United States Government.
Nothing in this report is intended to be and shall not be
treated or construed as an endorsement or
recommendation by the University of Maryland, United
States Government, or the authors of the product,
process, or service that is the subject of this report. No
one may use any information contained or based on this
report in advertisements or promotional materials related
to any company product, process, or service or in
support of other commercial purposes.

11. References
Francopoulo, G., Bel, N., George, M., Calzolari, N.,

Monachini, M., Pet, M. & Soria, C. (2007). Lexical
Markup Framework: ISO standard for semantic
information in NLP lexicons. GLDV (Gesellschaft für
linguistische Datenverarbeitung), Tübingen.

Hosken, M. (2009). Lexicon Interchange Format.
Version 0.13 DRAFT. Retrieved from
http://code.google.com/p/lift-standard/ Sept. 30, 2011.

Burnard, L., Bauman, S. (2007). P5: Guidelines for
Electronic Text Encoding and Interchange.
Text Encoding Initiative. Retrieved from
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/
Sept, 30, 2011.

Gao, S., Sperberg-McQueen, C.M., Thompson, H.S.
(2011). W3C XML Schema Definition Language
(XSD) 1.1 Part 1: Structures. W3C Candidate

Proceedings of eLex 2011, pp. 227-232

231

Recommendation 21 July 2011. Retrieved from
http://www.w3.org/TR/xmlschema11-1/ Sept. 30,
2011.

Jabbari, S. (2010). A Statistical Model of Lexical
Context. Ph.D Thesis. University of Sheffield.

ISO. (2008). ISO/IEC 19757-2:2008 Information
technology -- Document Schema Definition Language
(DSDL) -- Part 2: Regular-grammar-based validation
-- RELAX NG. ISO.

Qureshi, B.A., Abdul Haq. (2003). Standard 21st
Century Dictionary. Educational Publishing House,
Delhi, India.

Reynolds, C. (2003). A Maldivian Dictionary. Curzon.
New York: Routledge.

Stolcke, A. (2003). SRILM - An Extensible Language
Modeling Toolkit. In Proceedings of the International
Conference on Spoken Language Processing. Denver,
Colorado. September 2002.

Xia, Y., Wong, K-F. (2006). Anomaly Detecting within
Dynamic Chinese Chat Text. In Proceedings of the
11th Conference of the European Chapter of the
Association for Computational LinguisticsWorkshop
On New Text Wikis And Blogs And Other Dynamic
Text Sources. Trento, Italy. April 4, 2006.

Zajic, D., Maxwell, M., Doermann, D., Rodrigues, P. &
Bloodgood, M. (2011). Fixing Errors in Digital
Lexicographic Resources Using a Dictionary
Manipulation Language. In I. Kosem, K. Kosem (eds.)
eLexicography in the 21st century: New applications
for new users, Proceedings of eLEX 2011, Bled, 10-12
November 2011. Ljubljana, Slovenia: Trojina.

Proceedings of eLex 2011, pp. 227-232

232

